I would like to invite my dear old classmates to a dinner in our Chinese Cuisine Training Restaurant on 25 September
It is my pleasure, and as 曼德大佬 said, this gives my students valuable opportunities of training for which I would be very grateful.
Could we ask interested classmates to indicate availability on 25 September please, so that I can arrange for the booking and menu.
Carrie
http://www.worldcreativitysummit.org/outputpubfile.pdf The Chinese Cuisine Training Restaurant Pokfulam Training Centre Complex, 145 Pokfulam Road, Pokfulam, Hong Kong 香港薄扶林道145 號薄扶林訓練中心綜合大樓
Located on the 8th floor of the Pokfulam Training Centre Complex, the Chinese Cuisine Training Institute is VTC's flagship restaurant, specializing in the fine art of Chinese cuisine.
The restaurant has superb views over looking the western shores of Hong Kong Island and the western Hong Kong channel.
Enjoy a relaxing meal in beautiful and spacious surroundings.
//////////////////////////////////
Participants: * Carrie Willis * Clara Fung * David Yam * David Yau x 2 * * Kevin Ko * Kevin Ho * Edward Sin * Philip Chow * Lilian Kwan * * Lam Chiu Ying & So Man Wan * Ma Siu Lam & Mary Lo * Chu Fu Yau * * Robert Lam x 2 * Leung Wing Kwong * Wong Hin Hing * Anthony Wu * * Gilbert Wong
Back Row: David YAM, Clara CHAN, LEUNG Wing Kwong, Christopher SO, CHUNG Yip Wah, Anthony WU, MA Siu Lam
Front Row: Mary LO, Philip CHOW, SO Man Wan, LAM Chiu Ying, YAU Man Tak, Raymond CHOI, Kevin HO, Kevin KO, CHU Fu Yau & Priscilla CHU
////////////////////////////////////////////
from C Y Lam cc Kevin KO date Wed, Jul 22, 2009 at 11:54 PM subject "End of summer vacation" dinner for BSc 1971
Dear classmates,
A number of classmates have suggested to organize a dinner towards the end of the summer vacation. One of the rationale is to celebrate the award of Bauhinia Stars to some of our classmates. But I really see it as a pretext to call a gathering of old friends.
The date: 25 August (starting at 7:00 p.m., to be confirmed later) The venue: Staff restaurant of 城軒 of City University (courtesy of Lilian)
Because I shall be travelling outside Hong Kong for three weeks in August, Kevin Ko has kindly agreed to help organize the function.
Anyone interested in joining the dinner please notify Kevin Ko at the email address: kevinko@sahk1963.org.hk.
The cost of the dinner will be shared by all, including the Bauhinia Star awardees.
Regards, Chiu Ying
Participants: * Chung Yip Wah * Clara Fung * Lam Chiu Ying & So Man Wan * Mary Lo & Peter Ma Siu Lam * Kevin Ko * Raymond Choi * Christopher So * David Yam * Chu Fu Yau x 2 * Philip Chow * Gilbert Wong * Leung Wing Kwong * David Yau *
Lunch on June 19, 2009 at Summer Palace of HK Shangrila Hotel in Admiralty.
Table at 12:30 pm booked under Mr. Sin.
Participants: * Kevin Ko * Philip Chow * Edward Sin * Christopher So * David Yam * * David Yau * Clara Fung * Lilian Kwan * Wu Dick Kin * Leung Wing Kwong * * CY Lam * Gilbert Wong * Anthony Wu *
from Edward Sin to BSc 71 graduates date Thu, Apr 16, 2009 at 1:52 PM subject HKU Donation Campaign
HKU has been running a Bricks Campaign to seek donation for building its Centennial Campus which will be completed in 2012.
For donation of HK$18,000, we can have a 4" x 8" brick erected with description of our choice.
Although some of you may have donated your own brick, I would suggest our class of 1971 to donate one. Then I shall promote other graduation years to do the same.
For the HKU Science 70th anniversary celebration, the Alumni Liaison Subgroup (where I am serving) has contacted science alumni from 1967 to 2008 and established coordinators for each graduation years.
I contributed more than any other subgroup members, and made the finishing touch of finding the coordinators for the last two missing years.
If all the 42 graduation years are donating, there will be at least 42 bricks, and we can design a pattern to group and arrange the bricks together.
Thank you for your msg. Pleased to know that you are a long-time friend of Dominic Lee Tat-on, who is one of my best friends.
I am delighted to render my assistance requested. It is a role which any science alumnus would be pleased to take up. The 1967 cohort has been keeping in touch in recent years by email although we have not been able to track down all former classmates. I shall keep them posted.
I shall also get in touch with someone in the 1965, 1966 and 1968 cohorts. I am sure they will come up with a representative to set up the network if they have not already done so. I shall revert to you asap.
BTW, I intend to attend the gathering schedule for 20 March. I look forward to seeing you and other folks.
Best wishes.
Choi Chee-cheong
2009/2/28 Edward Sin
Dear Mr. Choi,
I know Dominic Lee Tak-On for more than 30 years as we both worked in the insurance field.
The HKU Science Faculty will be celebrating its 70th anniversary in 2009. It would like to take this opportunity to re-unite with all alumni.
I am a 1971 graduate, and am assigned the responsibility to contact senior alumni graduated before 1971. Your name is given to me by Dominic Lee, as you have actively served as class representative of 1967 graduates for a number of years.
The Science Faculty has a website for the 2009 celebration, at:
www.hku.hk/science/70th/
To facilitate liaison work, I have also created a supplementary website (with permission from the Science Faculty), at:
www.scienceann70.blogspot.com
You are most welcome to call me at 9379-3240 so that I can provide any information you need.
Grateful to hear from you at your earliest convenience.
The Faculty of Science will hold its 70th anniversary dinner on Sunday 15 November 2009.
Please let me know if you are interested in joining the dinner. I shall book a table in any case.
In case we have classmates coming back from overseas around that time, it might be possible to organize a couple of additional activities.
Visit the following website to find out more details about this event (and other anniversary celebration activities): http://www.hku.hk/science/70th/
Regards, Chiu Ying
* 13 Participants as informed to HKU 陳秋敏 CHAN Chiou Min Clara Ann 張歡鴻 CHEUNG Foon Hung 蔡浩澎 CHOI Ho Pang, Raymond 鄒耀華 CHOW Yiu Wah, Philip 關利平 KWAN Lee Ping, Lilian (replacing 高志超 KO Chi Chiu, Kevin) 林超英 LAM Chiu Ying 冼永生 SIN Wing Sang, Edward 蘇曼雲 SO Man Wan 蘇定光 SO Ting Kwong, Christopher 任懿君 YAM Yee Kwan, David 邱霜梅 YAU Sheung Mui, Carrie (sits at other table) 楊月明 YEUNG Yuet Ming, Lily Clement LAM (husband of Lily YEUNG)
During our re-union gathering on December 28, 2008, the subject of Coriolis effect was raised and discussed. It leads to the following finding:
a) that the Earth's Coriolis effect (an effect of differential surface velocity) is theoretically true (see Part 1).
b) that the Earth's Coriolis effect is hard to demonstrate as it requires a large bath/pool 2 yards across, to drain through a pin-hole for 12-15 minutes before the effect can be seen (see Part 2).
c) that we can emulate the Coriolis effect by rotating a half globe on a platform (see Part 3).
I would await some interested parties to assemble an experimental unit.
///// Part 1: Explanation of Coriolis effect /////
///// Part 2; The lack of good demonstration kit /////
Website discussing the difficulty of setting up an Ideal Sink experiment: http://www.thenakedscientists.com/HTML/content/interviews/interview/470/
Can You Detect The Coriolis Effect in your Sink? Dr Karl Kruszelnicki, University of Sydney, Australia
Chris - What we've been doing this evening is asking people all around the East of England to fill sinks and baths with water, pull out the plug and see which way the water swirls down the plug hole. We've got a mixture of results this evening, but is this experiment actually possible? Can we detect the spinning of the Earth using this approach?
Karl - You can get it to work. However, you're looking at a thing called the Coriolis force, which is actually angular momentum under a different name. The Coriolis force on the small bodies of water you're working on is roughly 10 million times smaller than the gravity force, so you really need to do the experiments delicately. Let's just back up a bit here. The thing about angular momentum is the same as when ice skaters go faster when they pull their hands into their body. They speed up because they bring more of their mass to the spin axis of the body. If you think about the Earth spinning, at the equator it's a long way from the spin axis, and at the poles it's right on the spin axis. If you get a storm brewing just above the equator, they spin and move away from the equator towards the poles. As they do so, they head towards the spin axis of the Earth. There's a bit of angular momentum that needs to be accounted for. If you do the equations, this leads to clockwise rotation of a hurricane in the southern hemisphere and anticlockwise rotation in the northern hemisphere. But here you're looking at something tens or hundreds of kilometres across. How can you hope to see that same effect in a tiny tub? The answer is that if you do the experiment very carefully, you should be able to see it. This has been done once or twice.
Chris - So it is possible?
Karl - Yes. In a fine journal called Nature in 1962, there was a paper by Shapiro who did the experiment at MIT. A few years later at the University of Sydney, also published in Nature, a paper by Trefethen in 1964 about the bath tub vortex in the Southern hemisphere. What you do is get a special bath tub, which is two yards across, six inches deep and has a tiny tiny central hole. You put a cork there so you can see which way the water's going. You let the water settle for a day or two so you lose all the residual spin from putting it in there and then you open the drain plug. The water begins to flow out very slowly and nothing very significant happens for about twelve to fifteen minutes. At around that stage, you can begin to see the cork take on a clockwise or anticlockwise rotation depending on your hemisphere. It happens slowly at first and then increases to one rotation every four seconds by the end. Shapiro wrote that when all the precautions prescribed were taken, the vortex was invariably in the anti clockwise direction. Soif you're a fair way away from the equator and you it carefully, you can see it. However if you just rush off the plane at Singapore which is one degree from the equator, and the surface of the Earth is about parallel to the spin axis, put some water in an oval bowl and pull the plug straight out, you're only going to see local effects.
Chris - So in other words, Michael Palin was fooled into thinking this was true at the equator.
Karl - Mate, there's an old Polish saying. If you've got a dog, don't bark. It's fairly obscure, but what it means is stick to your speciality. The number of areas of ignorance we have are huge. In this particular case in the TV series Pole to Pole, Michael Plain meets a man called Michael McCleary, who says that this line here on the ground is the equator. He has a little square tub which he's holding in his hands with floating matchsticks. He then walks off in one direction and spins as he turns around to face the tourists. That gives a spin to the water. He takes his finger off the bottom and you can see the matchsticks going round clockwise or anti clockwise as he's being told. Poor Mr Palin is being conned!
Chris - It just goes to show that even the great Michael Palin can be conned sometimes. Thanks very much for joining us Dr Karl and helping us to avoid throwing out the baby with the bath water and debunking the myth of the Coriolis effect and how it effects spin when water goes down the plug hole.
December 2005
///// Part 3 Suggested demonstration kit /////
I would suggest to use a rotating platform to rotate a double-layer half globe on a cylindrical upright pillar, with the following set-up.
Set-up 1: Pin-ball experiment
1a) While the platform is rotating from west to east, shoot a pin-ball from the equator to the north pole along the zero meridian. We predict that it would deflect to the right. If there are three holes at the 45 degree latitude, namely one at the zeroth meridian, one on the right and one on the left, the pin ball would "fall" into the right hole.
1b) If a pin-ball is shot from the north pole along the zero meridian to the equator, it will "fall" into the left hole.
1c) If similar arrangement is mounted on the cylindrical part, both balls will "fall" into the zeroth meridian hole.
1d) If we reverse the rotation of the platform from east to west, in the half globe, the ball shot from the equator will fall into the left hole and the ball shot from the north pole will fall into the right hole (different from (a) and (b)). In the cylindrical column, all balls will fall into the zeroth meridian hole (same as in (c)).
Set up 2: Air suction
2a) In the inner globe of the double layer, punch four holes: (i) a hole at the north pole, (ii) a hole in the equator at the zeroth meridian, (iii) a hole in the 45 degrees north latitude and the 45 degrees east longitude, (iv) a hole in the 45 degrees north latitude and the 45 degrees west longitude. 2b) If we punch punch a hole in the outer globe of the double-layer at the position of zeroth meridian and 45 degrees north latitude, air will be centrifuged out of the globe while the globe rotates. We can put sensors around the hole for detecting air current.
2c) Instead of punching a hole in the outer globe, we shall punch a hole in the inner globe at the same position (zeroth meridian and 45 degrees north latitude), and use a pump to pump air out of the double-layer there. The sensors in (b) will detect the current flow, which according to Coriolis effect should be in counter-clockwise direction.
2d) If we install similar things on the cylindrical column as a control experiment, the air flow direction may not form a pattern.
2e) If we reverse the direction of the rotation, we would expect the air flow in (c) will be in clockwise direction. Again, the control experiment installed in the cylindrical column will not display a clear pattern.
Set up 3: Water flow
3a) Mount two water reservoirs at the equator (called them the left and right side of heart), linked with pipe to enable water flow in-between.
3b) Mount two water reservoir at the north pole (called them the left and right side of the cerebrum), again linked with pipe to enable water to flow in-between
3c) Use a rubber tube (right tube) to connect the water outlet at the right heart to the water inlet at the right celebrum.
3d) Use a rubber tube (left tube) to connect the water outlet at the left celebrum to the water inlet at the left hear.
3e) Use a pump to pump water from the right heart upwards. Water would flow upward along the right tube to the right celebrum, then to the left cerebrum, fall down along the left tube to the left heart and return to the right heart to complete the circulation.
3f) As the globe rotates from west to east, the right tube will bulge to the right, and the left tube will bulge to the left, leaving a hollow for the anti-clocwise cyclone to form, as predicted by the Coriolis effect.
3g) Suggest to clamp the rubber tubes in place, activate the pump to circulate the water, then rotate the globe. When condition stabilizes, release the clamp and observe how the rubber tubes will bend. For better effect, install sensors to detect the bending of the rubber tubes. One form of sensor is to use florescent water and transparent rubber tubes, so that we can observe the bending of the rubber tubes without having to stop the globe from rotating.
3h) If we change the direction of the rotation, we would expect that rubber tubes to bend towards each other instead of bulging out.
3i) The control experiment installed at the side of the cylinder would not display the bending effect.
3j) To demonstrate the effect side by side, we may install similar water inlet and outlets at the 180 degrees meridian with water pumped up along the left rubber tube and water returning downward along the right rubber tube. It is predicted that the opposite effect of (3f) and (3h) would be observed.
Set up 4: Further improvement
4a) It may be desirable to divide the the globe and the cylinder into 4 compartments, two for the water pipes, one for the pin-ball and one for air flow.
4b) It may also be desirable to change the half globe design to a pyramid design (with a square base) to house the 4 compartments.
4c) It may also be desirable to build two units, one rotating from west to east (to emulate the northern hemisphere), and the other rotating from east to west (to emulate the southern hemisphere). If successful, this will explain everything in one go.